394 research outputs found

    NMNS publishes European atlas on the impact of global change on biodiversity

    Get PDF
    Peer reviewe

    Climate change and Spatial Conservation Planning

    Get PDF
    Peer Reviewe

    The mossy north: An inverse latitudinal diversity gradient in European bryophytes

    Get PDF
    Rubén G. Mateo [et al.]It remains hotly debated whether latitudinal diversity gradients are common across taxonomic groups and whether a single mechanism can explain such gradients. Investigating species richness (SR) patterns of European land plants, we determine whether SR increases with decreasing latitude, as predicted by theory, and whether the assembly mechanisms differ among taxonomic groups. SR increases towards the south in spermatophytes, but towards the north in ferns and bryophytes. SR patterns in spermatophytes are consistent with their patterns of beta diversity, with high levels of nestedness and turnover in the north and in the south, respectively, indicating species exclusion towards the north and increased opportunities for speciation in the south. Liverworts exhibit the highest levels of nestedness, suggesting that they represent the most sensitive group to the impact of past climate change. Nevertheless, although the extent of liverwort species turnover in the south is substantially and significantly lower than in spermatophytes, liverworts share with the latter a higher nestedness in the north and a higher turn-over in the south, in contrast to mosses and ferns. The extent to which the similarity in the patterns displayed by spermatophytes and liverworts reflects a similar assembly mechanism remains, however, to be demonstrated.Peer reviewe

    Uses and misuses of bioclimatic envelope modeling

    Get PDF
    Bioclimatic envelope models use associations between aspects of climate and species' occurrences to estimate the conditions that are suitable to maintain viable populations. Once bioclimatic envelopes are characterized, they can be applied to a variety of questions in ecology, evolution, and conservation. However, some have questioned the usefulness of these models, because they may be based on implausible assumptions or may be contradicted by empirical evidence. We review these areas of contention, and suggest that criticism has often been misplaced, resulting from confusion between what the models actually deliver and what users wish that they would express. Although improvements in data and methods will have some effect, the usefulness of these models is contingent on their appropriate use, and they will improve mainly via better awareness of their conceptual basis, strengths, and limitations

    Dynamic selection of dispersal pathways for species persistence under climate change

    Get PDF
    Ongoing climate change is already affecting distributions of many species. Future impacts of climate change are expected to be even greater. Conservation planning methodologies are usually based on the assumption that species distributions change relatively slowly unless they are directly affected by human activities, but this assumption is inappropriate under climate change. To address this problem, we develop a model that, assuming a fixed budget limiting the selection of areas devoted to conservation, selects areas for each of different periods of time, and indicates how species disperse between selected areas on successive periods. These areas are termed dispersal pathways. Their effectiveness is assessed based on the performance to retain species suitable climates over time, and on the ability of species to disperse between the areas. The model identifies maximum effective dispersal pathways, limited to some given budget. We applied the model to nine Iberian species and considered four climate change and budgetary scenarios. Climate change scenarios assuming reductions of greenhouse gas emissions had relatively modest gains in species retention areas. But larger budgets for area selection translate in significantly better retention levels. Nevertheless, our model identified species that, regardless the high conservation investment attained with unlimited budget, have a very limited ability to disperse to climatically suitable areas. Connectivity enhancement and assisted colonization could be considered for such cases

    Conservation planning with uncertain climate change projections

    Get PDF
    Climate change is affecting biodiversity worldwide, but conservation responses are constrained by considerable uncertainty regarding the magnitude, rate and ecological consequences of expected climate change. Here we propose a framework to account for several sources of uncertainty in conservation prioritization. Within this framework we account for uncertainties arising from (i) species distributions that shift following climate change, (ii) basic connectivity requirements of species, (iii) alternative climate change scenarios and their impacts, (iv) in the modelling of species distributions, and (v) different levels of confidence about present and future. When future impacts of climate change are uncertain, robustness of decision-making can be improved by quantifying the risks and trade-offs associated with climate scenarios. Sensible prioritization that accounts simultaneously for the present and potential future distributions of species is achievable without overly jeopardising present-day conservation values. Doing so requires systematic treatment of uncertainties and testing of the sensitivity of results to assumptions about climate. We illustrate the proposed framework by identifying priority areas for amphibians and reptiles in Europe. © 2013 Kujala et al.MC and MBA were funded by the European Commission Seventh Framework Program project European RESPONSES to climate change (grant agreement number 244092, URL: http://www.responsesproject.eu/).Peer Reviewe

    Networks of global bird invasion altered by regional trade ban

    Get PDF
    Research Article - EcologyWildlife trade is a major pathway for introduction of invasive species worldwide. However, how exactly wildlife trade influences invasion risk, beyond the transportation of individuals to novel areas, remains unknown. We analyze the global trade network of wild-caught birds from 1995 to 2011 as reported by CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora). We found that before the European Union ban on imports of wild-caught birds, declared in 2005, invasion risk was closely associated with numbers of imported birds, diversity of import sources, and degree of network centrality of importer countries. After the ban, fluxes of global bird trade declined sharply. However, new trade routes emerged, primarily toward the Nearctic, Afrotropical, and Indo-Malay regions. Although regional bans can curtail invasion risk globally, to be fully effective and prevent rerouting of trade flows, bans should be globalinfo:eu-repo/semantics/publishedVersio

    Potential for invasion of traded birds under climate and land‐cover change

    Get PDF
    Humans have moved species away from their native ranges since the Neolithic, but globalization accelerated the rate at which species are being moved. We fitted more than half million distribution models for 610 traded bird species on the CITES list to examine the separate and joint effects of global climate and land-cover change on their potential end-of-century distributions. We found that climate-induced suitability for modelled invasive species increases with latitude, because traded birds are mainly of tropical origin and much of the temperate region is ‘tropicalizing.’ Conversely, the tropics are becoming more arid, thus limiting the potential from cross-continental invasion by tropical species. This trend is compounded by forest loss around the tropics since most traded birds are forest dwellers. In contrast, net gains in forest area across the temperate region could compound climate change effects and increase the potential for colonization of low-latitude birds. Climate change has always led to regional redistributions of species, but the combination of human transportation, climate, and land-cover changes will likely accelerate the redistribution of species globally, increasing chances of alien species successfully invading non-native lands. Such process of biodiversity homogenization can lead to emergence of non-analogue communities with unknown environmental and socioeconomic consequences.info:eu-repo/semantics/publishedVersio

    Joint analysis of species and genetic variation to quantify the role of dispersal and environmental constraints in community turnover

    Get PDF
    Spatial turnover of biological communities is determined by both dispersal and environmental constraints. However, we lack quantitative predictions about how these factors interact and influence turnover across genealogical scales. In this study, we have implemented a predictive framework based on approximate Bayesian computation (ABC) to quantify the signature of dispersal and environmental constraints in community turnover. First, we simulated the distribution of haplotypes, intra‐specific lineages and species in biological communities under different strengths of dispersal and environmental constraints. Our simulations show that spatial turnover rate is invariant across genealogical scales when dispersal limitation determines the species ranges. However, when environmental constraint limits species ranges, spatial turnover rates vary across genealogical scales. These simulations were used in an ABC framework to quantify the role of dispersal and environmental constraints in 16 empirical biological communities sampled from local to continental scales, including several groups of insects (both aquatic and terrestrial), molluscs and bats. In seven datasets, the observed genealogical invariance of spatial turnover, assessed with distance–decay curves, suggests a dispersal‐limited scenario. In the remaining datasets, the variance in distance–decay curves across genealogical scales was best explained by various combinations of dispersal and environmental constraints. Our study illustrates how modelling spatial turnover at multiple genealogical scales (species and intraspecific lineages) provides relevant insights into the relative role of dispersal and environmental constraints in community turnover.Agencia Estatal de Investigación | Ref. CGL2016-76637-PAgencia Estatal de Investigación | Ref. PID2020-112935GB-I00Agencia Estatal de Investigación | Ref. PGC2018- 099363-B-I00Ministerio de Economía y Competitividad | Ref. RYC-2015-18241Xunta de Galici

    Oceanographic connectivity explains the intra-specific diversity of mangrove forests at global scales

    Get PDF
    The distribution of mangrove intra-specific biodiversity can be structured by historical demographic processes that enhance or limit effective population sizes. Oceanographic connectivity (OC) may further structure intra-specific biodiversity by preserving or diluting the genetic signatures of historical changes. Despite its relevance for biogeography and evolution, the role of oceanographic connectivity in structuring the distribution of mangrove’s genetic diversity has not been addressed at global scale. Here we ask whether connectivity mediated by ocean currents explains the intra-specific diversity of mangroves. A comprehensive dataset of population genetic differentiation was compiled from the literature. Multigenerational connectivity and population centrality indices were estimated with biophysical modeling coupled with network analyses. The variability explained in genetic differentiation was tested with competitive regression models built upon classical isolation-by-distance (IBD) models considering geographic distance. We show that oceanographic connectivity can explain the genetic differentiation of mangrove populations regardless of the species, region, and genetic marker (significant regression models in 95% of cases, with an average R-square of 0.44 ± 0.23 and Person’s correlation of 0.65 ± 0.17), systematically improving IBD models. Centrality indices, providing information on important stepping-stone sites between biogeographic regions, were also important in explaining differentiation (R-square improvement of 0.06 ± 0.07, up to 0.42). We further show that ocean currents produce skewed dispersal kernels for mangroves, highlighting the role of rare long-distance dispersal events responsible for historical settlements. Overall, we demonstrate the role of oceanographic connectivity in structuring mangrove intra-specific diversity. Our findings are critical for mangroves’ biogeography and evolution, but also for management strategies considering climate change and genetic biodiversity conservation
    corecore